An Extended Generator and Schrödinger Equations
نویسنده
چکیده
The generator of a Borel right process is extended so that it maps functions to smooth measures. This extension may be defined either probabilistically using martingales or analytically in terms of certain kernels on the state space of the process. Then the associated Schrödinger equation with a (signed) measure serving as potential may be interpreted as an equation between measures. In this context general existence and uniqueness theorems for solutions are established. These are then specialized to obtain more concrete results in special situations.
منابع مشابه
Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملNon-Linear Generalization of the Relativistic Schrödinger Equations
The theory of the Relativistic Schrödinger Equations is further developped and extended to non-linear field equations. The technical advantage of the Relativistic Schrödinger approach is demonstrated explicitly by solving the coupled Einstein-Klein-Gordon equations including a non-linear Higgs potential in case of a Robertson-Walker universe. The numerical results yield the effect of dynamical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999